





Faculdade de Ciências, Universidade de Lisboa

18 de Maio de 2022 18<sup>th</sup> May 2022







Pyrolysis is the <u>direct thermal decomposition</u> of the organic matrix in the absence of oxygen to produce solid, liquid and gas products.





































End-of-Life-Tyre



Oil product (bench-scale pyrolysis) at 500 °C





rCB product (pilot-scale thermal pyrolysis) at 500 °C Oil product (pilot-scale thermal pyrolysis) at 500 °C











Bio-oil



**Bio-char** 



Syn-gas

## **Pyrolysis Products**



**Raw bio-oil** 



### Six fractions of distillate



## **Atmospheric distillation residue**











Sotoudehnia et al., Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard *Journal of Analytical and Applied Pyrolysis* 145 (**2020**) 104722







| Compound                                  | Formula                         | M+  |
|-------------------------------------------|---------------------------------|-----|
| Furfural                                  | $C_5H_4O_2$                     | 96  |
| 2-Furfuryl alcohol                        | $C_5H_6O_2$                     | 98  |
| Butanedial                                | $C_4H_6O_2$                     | 86  |
| 2-Hexene, (E)-                            | $C_{6}H_{12}$                   | 84  |
| 2-Hydroxycyclopent-2-en-1-one             | $C_5H_6O_2$                     | 98  |
| 2-Propylfuran                             | $C_7 H_{10} O$                  | 110 |
| Phenol                                    | C <sub>6</sub> H <sub>6</sub> O | 94  |
| 2-Cyclopenten-1-one, 2-hydroxy-3-methyl-  | $C_6H_8O_2$                     | 112 |
| Heptanal                                  | $C_7H_{14}O$                    | 114 |
| Styrene                                   | $C_8H_8$                        | 104 |
| 2H-Pyran-2,6(3H)-dione                    | $C_5H_4O_3$                     | 112 |
| 1,2-Cyclopentanedione, 3-methyl           | $C_6H_8O_2$                     | 112 |
| 1-Acetyloxypropane-2-one                  | $C_5H_8O_3$                     | 116 |
| Butanoic acid, 2-propenyl ester           | $C_7 H_{12} O_2$                | 128 |
| Furaneol                                  | $C_6H_8O_3$                     | 128 |
| Phenol, 2-methoxy-                        | $C_7H_8O_2$                     | 124 |
| 2-Furancarboxaldehyde, 5-(hydroxymethyl)- | $C_6H_6O_3$                     | 126 |
| 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy-   | $C_7 H_{10} O_2$                | 126 |
| Pentane, 3-ethyl-3-methyl-                | $C_{8}H_{18}$                   | 114 |
| Octane, 2-methyl-                         | C9H20                           | 128 |
| Guauacol,3-methyl-                        | $C_8H_{10}O_2$                  | 138 |
| 3,4-Dimethylcyclohexanol                  | $C_8H_{16}O$                    | 128 |



#### Pyrolysis of biomass wastes

Properties of bio-oil obtained from corrugated cardboard (CCB) pyrolyzed at various temperatures.

| Sample ID      | Water content (%) | Calorific Value (MJ kg <sup>-1</sup> ) | pН   |
|----------------|-------------------|----------------------------------------|------|
| CCB350 Bio-oil | 58.3              | 21.2                                   | 3.17 |
| CCB400 Bio-oil | 52.0              | 21.5                                   | 3.25 |
| CCB450 Bio-oil | 50.0              | 21.7                                   | 4.13 |

Proximate and ultimate analysis and calorific value of corrugated cardboard (CCB) and pyrolysis biochars.

|                                              | CCB                                                                                                                                                  | CCB 350 °C Biochar                                                                                                                                     | CCB 400 °C Biochar                                                                                                                 | CCB 450 °C Biochar                                                                                                                  |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| % N<br>% C<br>% H<br>% Ash<br>% Fixed carbon | $\begin{array}{r} 0.12 \ \pm \ 0.01 \\ 43.24 \ \pm \ 0.00 \\ 5.80 \ \pm \ 0.03 \\ 4.0 \ \pm \ 0.2 \\ 13.1 \ \pm \ 0.7 \\ 10 \ \pm \ 0.0 \end{array}$ | $\begin{array}{r} 0.11 \ \pm \ 0.01 \\ 46.84 \ \pm \ 0.01 \\ 5.70 \ \pm \ 0.01 \\ 5.0 \ \pm \ 0.3 \\ 17.2 \ \pm \ 0.9 \\ 10.4 \ \pm \ 0.0 \end{array}$ | $\begin{array}{r} 0.16 \ \pm \ 0.01 \\ 51.33 \ \pm \ 0.47 \\ 4.80 \ \pm \ 0.06 \\ 5.2 \ \pm \ 0.3 \\ 27.8 \ \pm \ 1.4 \end{array}$ | $\begin{array}{r} 0.18 \ \pm \ 0.01 \\ 54.17 \ \pm \ 0.32 \\ 3.70 \ \pm \ 0.03 \\ 12.3 \ \pm \ 0.6 \\ 41.8 \ \pm \ 2.1 \end{array}$ |
| Calorific value (MJ kg <sup>2</sup> )        | $18 \pm 0.9$                                                                                                                                         | $18.4 \pm 0.9$                                                                                                                                         | $19.7 \pm 1.0$                                                                                                                     | $20.4 \pm 1.0$                                                                                                                      |









# ASTM quality standards for pyrolysis bio-oil used for combustion in boilers

#### Table 6.1. ASTM burner fuel standard D 7544 for fast pyrolysis bio-oil.

| Property                                 | Grade G | Grade D |
|------------------------------------------|---------|---------|
| Gross heat of combustion, MJ/kg, min     | 15      | 15      |
| Water content, % mass, max               | 30      | 30      |
| Pyrolysis solids content, % mass, max    | 2.5     | 0.25    |
| Kinematic viscosity at 40 °C, mm²/s, max | 125     | 125     |
| Density at 20 °C, kg/dm <sup>3</sup>     | 1.1–1.3 | 1.1–1.3 |
| Sulphur content, % mass, max             | 0.05    | 0.05    |
| Ash content, % mass, max                 | 0.25    | 0.15    |
| рН                                       | Report  | Report  |
| Flash point, °C, min                     | 45      | 45      |
| Pour point, °C, max                      | -9      | -9      |







#### Table 1

Comparison of selected properties of bio-oils derived from pyrolysis of rice husk and bio-oils derived from pyrolysis of wood and heavy petroleum fuel oil.

| Properties             |   | Bio-oils derived<br>from pyrolysis of<br>rice husk [9] | Bio-oils derived<br>from pyrolysis of<br>wood [10] | Heavy petroleum<br>fuel oil [11] |
|------------------------|---|--------------------------------------------------------|----------------------------------------------------|----------------------------------|
| Water content<br>(wt%) |   | 25.2                                                   | 15–30                                              | 0.1                              |
| pН                     |   | 2.8                                                    | 2.5                                                | -                                |
| Elemental              | С | 41.7                                                   | 54-58                                              | 85                               |
| composition            | Н | 7.7                                                    | 5.5-7.0                                            | 11                               |
| (wt%)                  | 0 | 50.3                                                   | 35-40                                              | 1.0                              |
|                        | Ν | 0.3                                                    | 0-0.2                                              | 0.3                              |
| Ash                    |   | -                                                      | 0-0.2                                              | 0.1                              |
| HHV (MJ/kg)            |   | 17.42                                                  | 16-19                                              | 40                               |
| Viscosity (at          |   | 128                                                    | 40-100                                             | 180                              |
| Solids (wt%)           |   |                                                        | 0.2_1                                              | 1                                |
| Distillation           |   | -                                                      | U.2-1                                              | 1                                |
| residue (wt%)          |   | -                                                      | 0000                                               | 1                                |







The major drawbacks of the bio-oil is that it is:

- highly oxygenated,
- viscous,
- corrosive and
- thermally unstable



Presence of <u>water</u> and <u>oxygenated compounds</u> reduces its calorific value and change significantly the combustion characteristics.

















#### Catalytic upgrading of pyrolysis oil or vapors

Type of catalytic treatments:

(1) CoMo or NiMo + H<sub>2</sub> - hydrodeoxygenation or hydrotreating catalysts



(2) zeolite upgrading

Remove sulphur from fossil fuels Remove oxygen or nitrogen from fossil fuels Convert double bond to single bonds







Catalytic cracking - break large hydrocarbon molecules into gasoline, diesel, kerosene, waxes and all kinds of other by-products of petroleum.











# Pyrolysis Bio-oils



# **Upgrading/Hydrodeoxygenation**

- Biofuels
- Bioliquids



Adapted from: http://www.btg-btl.com

## **Biological Fermentation**

- Bulk Chemicals
- Specialty Chemicals
- Biopolymers

















## **Pyrolysis of oils and fats**

#### HVOs - Hydrogenated vegetable oils - Second generation biodiesel



Diretiva (UE) 2018/2001 do Parlamento Europeu e do Conselho de 11 de dezembro de 2018 relativa à promoção da utilização de energia de fontes renováveis











Fig. 3. Reaction mechanism for the pyrolysis of triglycerides (Schwab et al., 1988).









































Paraguay

























Pyrolysis of waste oils for the production of biofuels: A critical review Guangcan Su, Hwai Chyuan Ong, M. Mofijur, T.M. Indra Mahlia, Yong Sik Ok <u>https://doi.org/10.1016/j.jhazmat.2021.127396</u>

Hydrocarbons recovery through catalytic pyrolysis of compostable and recyclable waste plastics using a novel desk-top staged reactor Prakashbhai R. Bhoi, Md Hafizur Rahman https://doi.org/10.1016/j.eti.2022.102453







Thank you for your attention

Margarida Gonçalves mmpg@fct.unl.pt



Any questions?